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Using traditional five-interferogram algorithm to unwrap phase for length measurement, the phase steps
must be equal to π/2 exactly, but it is almost impossible to achieve in nanometer positioning technique.
Aiming to overcome this defect of traditional five-interferogram algorithm, an improved five-interferogram
algorithm is presented. This improved algorithm not only keeps the high accuracy of traditional five-
interferogram algorithm, but also does not need absolute equal step to unwrap phase. Instead, this algo-
rithm only needs measuring phase-shifting. With the numerical simulation, the improved five-interferogram
algorithm shows high accuracy, high reliability, and feasibility in practice. It is very valuable for accurate
length measurement with Fizeau interferometer and Fabry-Perot interferometer.

OCIS codes: 120.3180, 120.2650, 120.2230, 120.3930, 120.3940.

Phase shifting algorithm is a high accurate and efficient
algorithm to unwrap the phase difference between two
interference beams. It has been applied to various sit-
uations, such as optical testing, surface profilometry,
surface roughness estimation, and surface displacement
measurement etc.[1−7]. The fundamental concept of
phase shifting algorithm is that the phase difference
in one period (0 − 2π) can be determined by acquir-
ing intensity signal from multiple interferograms[8−11].
Substantial results have been made in recent years to
establish accurate error-compensating phase extraction
algorithm[12,13]. A considerable number of these algo-
rithms have been derived using various approaches, such
as exact solutions, error minimization date filtering char-
acteristic polynomials, least square estimation[6,8,14] and
Fourier analysis techniques which represent interference
fringes with non-cosine profile by a fundamental and
certain higher harmonics[15]. Most of those approaches
are based on mathematical model of two-beam interfer-
ence. Generally speaking, the algorithm error can be
ignored when these algorithms are used in the multiple-
beam interference case (due to multiply reflection of
standard plates)[16,17], such as the accurate length mea-
surement with Fizeau interferometer and Fabry-Perot
interferometer. According to numerical simulation, the
three-interferogram algorithm or four-interferogram al-
gorithm is much more sensitive than the traditional five-
interferogram algorithm to the measuring error of inter-
ferogram intensity and phase error of shifting step[14,16].
But some strict condition must be met when using tra-
ditional five-interferogram algorithm. It means that the
five shifting steps must be absolutely equal to one an-
other, which is impossible to be realized by positioning
technique[17]. In this paper, we will establish the math-
ematical model of multiple-beam interference, develop a
novel algorithm, and study algorithm error due to ignore
multiple-beam interference and other error sources by
theoretical analysis and numerical simulation.

The mathematical model of intensity function is a
base to various phase shifting algorithms. We will de-
rive two kinds of intensity function models, which cor-
respond with interferogram of two-beam interference
and multiple-beam interference respectively. Figure 1 is

principle schematic for length measurement using laser
interference method.

In Fig. 1, P1 is the standard plate with two reflection
surfaces and P2 is the surface to be measured. Between
P1 and P2 is air, so the refraction index between the two
plates is almost equal to 1. An incident light beam with
incident angle i (it means the refraction angle is also
equal to i) is reflected many times by the inner surfaces
of P1, P2. The reflection ratio of the standard plate P1

and the surface P2 is ρ and ρ′, respectively, ρ =
(

A1

A0

)2

,

ρ′ =
(

A′

1

A′

0

)2

, where A0 is the amplitude of original inci-

dent beam, A1 is the amplitude of first reflection beam
from P1, A′

0 is the amplitude of transparent beam from
P1 to P2, A′

1 is the amplitude of first reflection beam
from P2. As shown in Fig. 1, one part of the incident
beam is reflected from P1, another part passes through
P1 and is reflected by P2, then passes through P1 and so
on. The optical path difference between each two neigh-
bor beams reflected by or passing through P1 is equal to
2mh cos(i) (m is air refraction index). For approximate
vertical incident beam, the half wave loss due to reflect
from P2 must be taken into account. The amplitude of
each reflection beam can be expressed in complex number
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Fig. 1. Illustration of interferometry for length measurement.
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where ϕ is the phase difference between two-neighbor beams. Using Euler’s formula cosϕ = eiϕ+e−iϕ

2 , the composite
intensity I can be expressed as below

I =

A2

0

�
ρ +

ρ′(1 − ρ)2[1 + (ρρ′)n − 2(ρρ′)n/2 cos(nϕ)] − 2
√

ρρ′(1 − ρ)[cos(ϕ) −
√

ρρ′ − (ρρ′)n/2(cos((n + 1)ϕ) −
√

ρρ′ cos(nϕ))]

1 + ρρ′ − 2
√

ρρ′ cos(ϕ)

�
.

(1)

Equation (1) is the exact expression for intensity distri-
bution of interferogram. When n = 1, that is, only two
light beams are taken into account, the composite inten-
sity I ′ can be expressed as

I ′ = A2
0[ρ + ρ′(1 − ρ)2 − 2

√

ρρ′(1 − ρ) cosϕ]. (2)

Equation (2) shows a strict cosine dependent relation-
ship between the interferogram intensity and the phase
difference ϕ of two-neighbor beams. When n = ∞, that
means, all light beam reflected from and passing through
standard plate is taken into account, the composite in-
tensity I can be expressed as

I = A2
0

[

1 −
(1 − ρ)(1 − ρ′)

1 + ρρ′ − 2
√

ρρ′ cosϕ

]

. (3)

For unwrapping the phase ϕ caused by optical path
difference between two neighbor interference beams, we
neglect the minor interference beams and suppose the in-
terferogram is formed only by interference of two main
beams. Let intensity signal of five interferograms be I1,
I2, I3, I4, I5, respectively, the phase in each interferogram
can be expressed as ϕ−2ε−k1, ϕ− ε−k2, ϕ, ϕ+ ε+k3,
ϕ + 2ε + k4. The ε is shifting step, and k1, k2, k3, k4

are positioning deviation of shifting step. According to
Eq. (2), we have the following equation groups:

I1 = A + B cos(ϕ − 2ε − k1),

I2 = A + B cos(ϕ − ε − k2),

I3 = A + B cosϕ,

I4 = A + B cos(ϕ + ε + k3),

I5 = A + B cos(ϕ + 2ε + k4),

where A = A2
0[ρ + ρ′(1 − ρ)2], B = A2

0[−2
√

ρρ′(1 − ρ)].
Unwrapping this equation groups, we have

tanϕ =
2k + k(cos k1 + cos k4) + sin k2 − sin k3

cos k2 + cos k3 + k(sink4 − sin k1)
sin ε.

(4)

Let the shifting step be equal to π/2[12], then

tanϕ =
2k + k(cos k1 + cos k4) + sin k2 − sin k3

cos k2 + cos k3 + k(sink4 − sin k1)
, (5)

where k = I2−I4
2I3−I5−I1

. According to Eq. (5), it is easy to
unwrap phase ϕ. The phase error of ϕ only comes from
two error sources: the measuring error of interferogram
intensity and the measuring error of shifting step. Let’s
pay attention to a special case: supposing the positioning
errors of shifting step k1, k2, k3, k4 are equal to 0, then
the phase shifting of each step is π/2 exactly. According

to Eq. (5), we have

tan ϕ =
2(I2 − I4)

2I3 − I5 − I1
. (6)

Equation (6) is the classical formula of traditional
five-interferogram algorithm[17]. The most significant
difference between Eqs. (5) and (6) is that the exact shift-
ing step of π/2 is demanded in Eq. (6) which is almost
impossible to positioning technique. The following is an
example using Eqs. (5) and (6) to unwrap ϕ, which sup-
pose that each positioning error of shifting step is 0.8 nm,
ρ = 0.035 (quartz glass material) and ρ′ = 0.35 (silicon
crystal).

In Fig. 2, the dot curve represents phase error in phase
range of 0−π/2, which is produced by unwrapping phase
by using Eq. (6). It means the phase error due to po-
sitioning error of shifting step with 0.8 nm reaches to
1% phase period and will strongly influence accuracy of
traditional five-interferogram algorithm; The solid line
represents phase error produced by Eq. (5) which is com-
pletely covered with horizontal axis, it means that the
phase error is 0 in phase range of 0 − π/2.

When shifting step ε is not equal to π/2 or the shift-
ing step is not equal to each other exactly, the tra-
ditional five-interferogram algorithm will cause a sig-
nificant phase error. In this case the improved five-
interferogram algorithm (IFIA) is a reasonable choice.
As follows, we will discuss the phase error of IFIA due
to ignorance multiple-beam interference and other error
sources, such as intensity error and shifting step error by
theoretical analysis and numerical simulation.

Get local derivative of I1, I2, I3, I4, I5 with respect to
ϕ of Eq. (5), let ε = π/2, we have sub-uncertainty u1 due
to ignorance of multiply beam interference

u1 = ∆ϕ =

5
∑

i=1

∂ϕ

∂Ii

∆Ii

= F

{

sinϕ

4
(∆I1 − 2∆I3 + ∆I5) +

cosϕ

2
(∆I2 − ∆I4)

]

,

(7)

Fig. 2. Phase error in phase range of 0 − π/2.
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where F = 2(cos k2+cos k3)+cos(k1−k2)+cos(k1+k3)+cos(k2+k4)+cos(k4−k3)
2[cos k2+cos k3+k(sin k4−sin k1)]2 . ∆Ii (i = 1, 2, 3, 4, 5) can be calculated by Eqs. (2)

and (3), that is,

∆Ii

A2
0

= ρ + ρ′(1 − ρ)2 − 1 − 2
√

ρρ′(1 − ρ) cosϕi +
(1 − ρ)(1 − ρ′)

1 + ρρ′ − 2
√

ρρ′ cosϕi

. (8)

According to Eq. (7), let value of k1, k2, k3, k4 randomly, for example, be equal to 5 nm, the reflection ratio of surface
to be measured ρ′ = 0.35 (surface of crystal silicon sphere), and the reflection ratio of the standard plate ρ changes
from 0.035 to 0.35, then the sub-uncertainty u1 of phase error is less than 0.01%, which can be ignored even in high
precision measurement[18]. When the reflection ratio of standard plate is equal to 0.35, the phase error is up to 0.5%
which is a significant phase error and cannot be ignored in an accurate measurement. The standard plate is usually
made from quartz material, and the reflection ratio of ρ is much less than 0.1. So the sub-uncertainty u1 is much less
than 0.01%, which can be ignored.

The phase error also depends on the intensity measurement error. For IFIA, the phase sub-uncertainty u2 due to
the intensity measurement error can be calculated with Eq. (5) and be expressed as

u2 = F

√

[(∆I2)2 + (∆I4)2][
cosϕ

2
]2 + [(∆I1)2 + (2∆I3)2 + (∆I5)2][

sin ϕ

4
]2. (9)

Equation (9) shows the relationship between the phase
error and the measuring error of interferogram intensity.
For more simple and easy to understand this relation-
ship, suppose that the measuring error of each shifting
step is exact equal to each other, and the maximal error
range of relative intensity ∆Iimax

Imax

changes from 0.001 to

0.035 when ρ = 0.035, ρ′ = 0.35. Figure 3 expresses
the relationship schematic of the phase error of this al-
gorithm in one phase period versus intensity measuring
error (let value of k1, k2, k3, k4 be 5 nm randomly).

Figure 3 shows, the increase of phase error goes to-
gether with the increase of intensity measuring error.
When the intensity measuring error is less than 1%
which is easy to realize, the phase error is better than
0.1% phase period. According to this simulation, if mea-
suring error of interference intensity is 0.5%, we have
u2=0.04% phase period.

When using the phase shifting algorithm to unwrap
phase for length measurement, it is almost impossible
to control shifting step to π/2 exactly. In the previous
discussion of this article, the phase in each step can be
expressed as ‘ϕ − 2ε − k1, ϕ − ε − k2, ϕ, ϕ + ε + k3,
ϕ + 2ε + k4’. Obviously, it can be allowed to let ε equal
to π/2 by changing the value of k1, k2, k3, k4. But for

Fig. 3. Phase error of the improved algorithm versus intensity
measuring error. IE: intensity error.

decreasing the absolute value of k1, k2, k3, k4 to improve
accuracy of phase shifting algorithm, we usually let the
shifting step be equal to ε, close to π/2. Here we will
discuss how the positioning deviation of shifting step ∆ε
(∆ε is equal to ε − π/2) influences the sub-uncertainty
u3 of IFIA. Get derivative of ε with respect to Eq. (4),
then,

u3 = F
sin(2ϕ) cos(ε)

2
∆ε. (10)

Because ∆ε is a very small quantity, and ε = 90◦ + ∆ε,
approximately, we have sin(∆ε/2) = ∆ε/2, Eq. (10) can
be changed to

u3 = F
sin(2ϕ)

2
sin(

∆ε

2
)∆ε. (11)

When positioning error of each shifting step is less
than 0.8 nm, the phase error of IFIA based on the
two-beam interference is much less than 10−4 (0.01%)
phase period[18]. We give a special calculation by using
Eq. (11). In a precision length measuring system, when
the positioning error of shifting step is 2 nm, the measur-
ing error of length is 0.02 nm. This result shows the IFIA
based on the two-beam interference is very insensitive to
the positioning error of the shifting step. In fact, in most
cases, there is not any positioning error of shifting step
to IFIA, because we make the shifting step ε be equal
to π/2 exactly. Any positioning error of shifting step is
included in k1, k2, k3, k4, so the u3 does not exist.

For evaluating the phase error (sub-uncertainty u4) due
to the measuring error of shifting step, get derivative of
k1, k2, k3, k4 with respect to Eq. (5), then

u4 =

√

√

√

√

4
∑

i=1

(
∂ϕ

∂ki

∆ki)2, (12)

where
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dϕ

dk1
=

k cos2 ϕ(k + 2k cos k1 + k cos(k1 + k4) + sin(−k1 + k2) − sin(k1 + k3))

(cos k2 + cos k3 − k(sin k1 − sink4))2
,

dϕ

dk2
=

cos2 ϕ(1 + cos(k2 + k3) + 2k sin k2 − k sin(k1 − k2) + k sin(k2 + k4))

(cos k2 + cos k3 − k(sin k1 − sin k4))2
,

dϕ

dk3
=

cos2 ϕ(−1 − cos(k2 + k3) + 2k sink3 + k sin(k1 + k3) + k sin(k3 − k4))

(cos k2 + cos k3 − k(sin k1 − sin k4))2
,

dϕ

dk4
= −

k cos2 ϕ(k + 2k cos k4 + k cos(k1 + k4) + sin(k2 + k4) + sin(−k3 + k4))

(cos k2 + cos k3 − k(sin k1 − sink4))2
.

Fig. 4. 3D schematic diagram of phase error versus phase ϕ
and deviation k4. SD: step deviation.

Because the measuring error of shifting step is random,
the “Root-Sun-Square” method is reasonable to com-
posite the phase error u4. As a special case in Eq. (7),
if k1 = k4 = 2∆ε, k2 = k3 = ∆ε, the result of ∆ϕ is
completely equivalent with the evaluative result by using
Eq. (6): ∆ϕ = sin(2ϕ) sin2(∆ε/4)[12]. In such a case,
each positioning error of shifting step must be equal to
π/2 exactly, which is almost impossible to positioning
technique. For more reasonable evaluation of the phase
error, the deviation value of shifting step (by actual mea-
surement) k1, k2, k3, k4 is needed, and the measuring
error of the deviation value of shifting step ∆k1, ∆k2,
∆k3, ∆k4 should be added to Eq. (12). Within the range
of −10−10 nm, we suppose the value of k1, k2, k3 is ran-
domly −5, 6, 10 nm, respectively, and the absolute value
of measuring error ∆k1, ∆k2, ∆k3, ∆k4 are less than 0.8
nm, and thus take 0.8 nm to put in Eq. (12). Figure 4 is
the three-dimensional (3D) schematic diagram of phase
error versus phase ϕ and positioning deviation of shifting
step k4 in the range −10 − 10 nm.

In conclusion, when the measuring error of shifting
step is less than 0.8 nm, the phase error of IFIA is about
10−4 phase period (take u4 = 0.035%). The phase error
of IFIA is almost irrelevant to the change of deviation
k4 within the range of −10 − 10 nm (in fact, we have
done large number of numerical calculation, all of which
produce the same result). This result indicates that the
randomly supposed value of k1, k2, k3 is reasonable.

If measuring error of interferogram intensity is 0.5%
and all of measuring error of shifting step ∆k1, ∆k2,
∆k3, ∆k4 are less than 0.8 nm (this is easy to realize
with nanometer measurement technique), the composite
standard uncertainty U of IFIA can be expressed as fol-
lows:

U =
√

u2
1 + u2

2 + u2
3 + u2

4 = 0.053% (phase period).

In order to overcome the defects of the traditional five-
interferogram algorithm, which demands the equal shift-
ing step strictly and is almost impossible to achieve, a
new IFIA is developed. This algorithm not only keeps
the high accuracy of traditional five-interferogram algo-
rithm, but also does not need absolute equal step to un-
wrap phase. Instead, this algorithm only needs measur-
ing phase-shifting. With the results of numerical simu-
lation, the improved algorithm shows high accuracy of
0.05% phase period. It means, for length measurement
with 633 laser, the uncertainty of length can reach to 0.2
nm when using IFIA to unwrap phase.
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